

AcegasAps

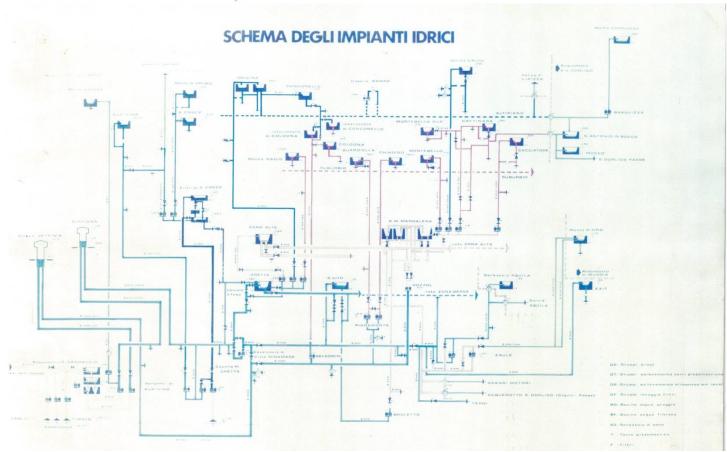
OMRON

Ammodernamento dei quadri di potenza di stazioni di pompaggio in una logica di miglioramento dell'efficienza energetica. Il caso della multiutility Acegas-APS per la rete idrica di Trieste

Ing. Fabio Fontanot, Acegas APS

Ing. Mauro Zoglia, IGP

Ing. Marco Viganò, Omron

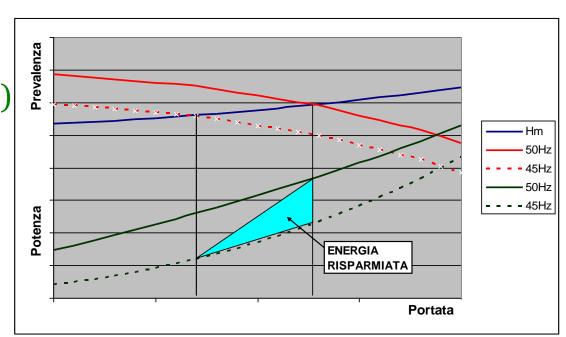

L'acquedotto di Trieste

Territorio: l'intera provincia di Trieste (230.920 abitanti, 109.551 clienti)
Tre impianti di captazione: Pozzi dell'Isonzo, Risorgive Sardos e Timavo
Dieci impianti di risollevamento
Cinquantacinque serbatoi di stoccaggio
1.100 km di rete di distribuzione
Volume distribuito: 52.000.000 m3/anno
Portata media: 5.900 m ₃ /h

L'acquedotto di Trieste

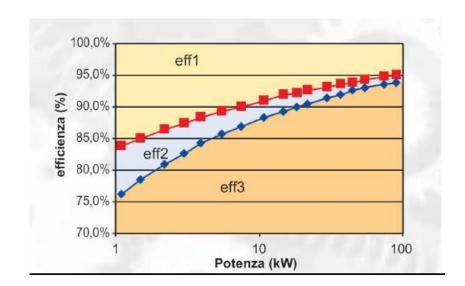
Le tre aree di intervento

- ☐ Azionamento a velocità variabile con inverter
- ☐ Impiego di motori ad alta efficienza
- ☐ Logica di ottimizzazione delle fasce orarie



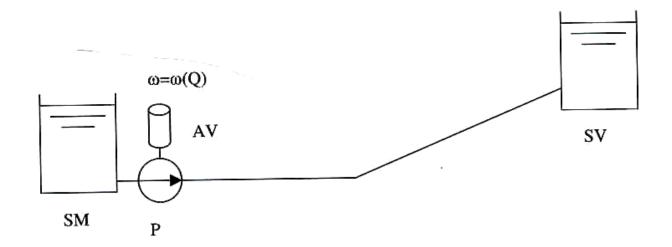
Azionamento a velocità variabile con inverter

- \square Prevalenza \equiv n²
- \Box Potenza \equiv n³


=> Riducendo la portata si risparmia sulle p.d.c.!

Impiego di motori ad alta efficienza

- ☐ Minori perdite a vuoto con l'impiego di lamierini a basse perdite per il nucleo
- ☐ Minori perdite Joule con la maggiorazione della sezione dei conduttori di statore e rotore



- □Ottimizzazione di numero e della geometria delle cave
- => Compensano ampiamente il rendimento <100% dell'inverter!

Logica di ottimizzazione delle fasce orarie

=> Si può sfruttare l'accumulo del serbatoio per concentrare il pompaggio nelle ore notturne, quando l'energia costa meno!

Ottimizzazione delle fasce orarie – analisi teorica

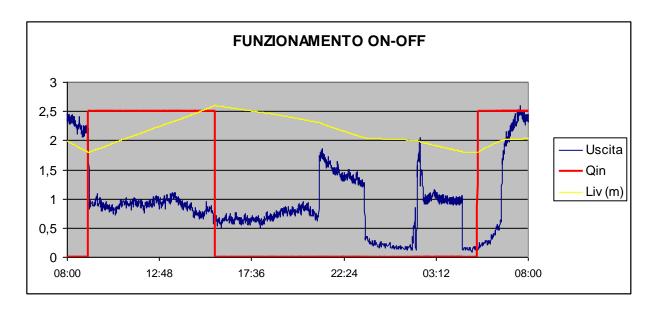
- Capacità serbatoio di monte: 3695 m³
- Livello minimo di esercizio: m 1,80
- Livello massimo di esercizio: m 2,60
- Dislivello geodetico: m 118
- Diametro condotta premente: DN200
- Lunghezza condotta premente: 3180 m
- Potenza nominale: 184 kW
- Portata nominale: 250 m³/h

F1 (peak): 8-19

F2 (off peak): 7-8 + 19-23

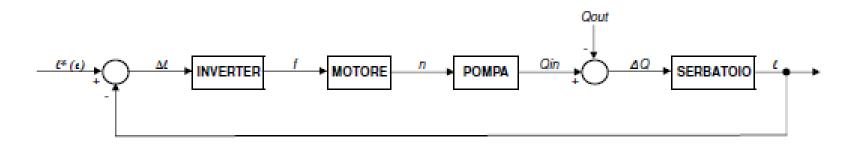
F3 (discount): 23-7

Prezzo in F1: 100%


Prezzo in F2: 82%

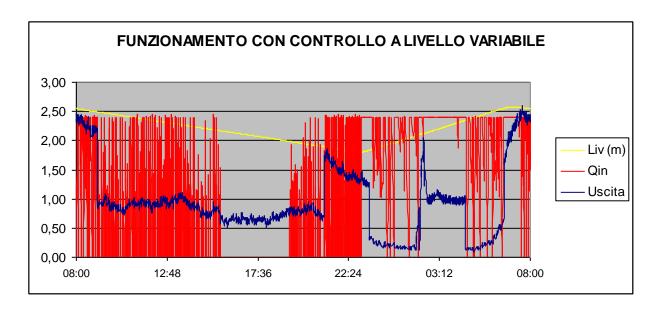
Prezzo in F3: 56%

Ottimizzazione delle fasce orarie – analisi teorica


=> Il sistema on-off attiva a pompa quando si raggiunge il livello minimo, non quando l'energia costa meno!

Ottimizzazione delle fasce orarie – analisi teorica

SISTEMA DI CONTROLLO A LIVELLO VARIABILE



=> L'accensione/spegnimento delle pompe è ottimizzata in funzione delle fasce orarie, senza conoscere la portata in uscita!

Ottimizzazione delle fasce orarie – analisi teorica

=> Grazie all'inverter si può sfruttare l'accumulo del serbatoio per concentrare il pompaggio nelle ore notturne!

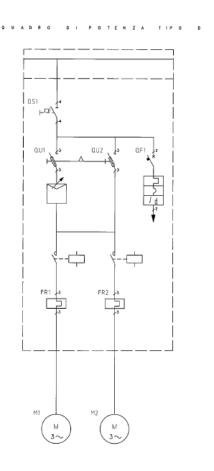
Ottimizzazione delle fasce orarie – risultati teorici

	ON-OFF	Liv. Variabile
Liv. iniziale (m)	1,99	2,55
Liv. Finale (m)	2,03	2,55
Energia (kWh)	2.242	2.144
Costo (Euro)	205,59	146,01
Risparmio energetico	0%	4%
Risparmio economico	0%	29%

=> Con il sistema on-off Il prezzo medio dell'energia è mediamente pari al 92% del prezzo peak, con il controllo a livello variabile è pari al 68% del prezzo peak (prezzo discount = 56%)!

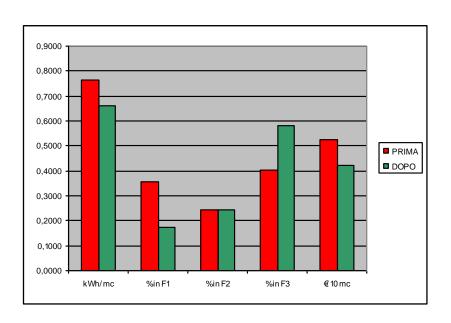
Il progetto

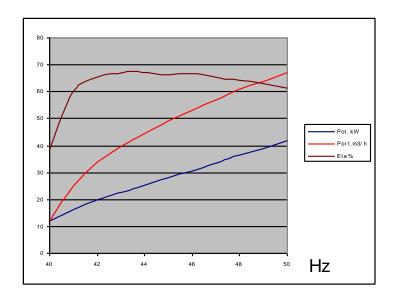
🕽 Installazione pilota (Centrale di Farnei, sollevamento Mo	nte
Castellier)	


- ☐ Inverter serie E7Z a 400 V :
 - 2 x 45 kW
 - 1 x 55 kW
 - 2 x 90 kW
 - 1 x 132 kW
 - 1 x 160kW
- ☐ Inverter serie SX a 400V:
 - 2 x 315kW
- Azionamento unificato polivalente:
 - 2 motori identici per ciascun impianto di sollevamento (ridondanza 100%)
 - 1 inverter per ciascun impianto di sollevamento con alternanza dei motori
 - Possibilità di esclusione dell'inverter e di parallelo manuale di emergenza

- Motori: potenza totale 1.247 kW
 - 2 motori a 400 V da 45 kW
 - 1 motore a 400V da 55 kW
 - 2 motori a 400V da 90 kW
 - 1 motore a 400V da 132 kW
 - 1 motore a 400V da 160 kW
 - 2 motori a 400V da 315 kW

Azionamento unificato polivalente





Risultato della sperimentazione

□La pompa funziona correttamente, senza penalizzazione eccessiva del rendimento, fra 42 e 50 Hz

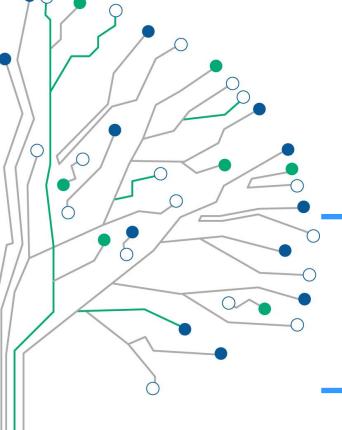
□ L'energia per m³ sollevato diminuisce del 13%, il costo per m³ sollevato diminuisce del 20% perché quasi il 60% dell'energia è consumata di notte!

Risultato della sperimentazione

	Apr 2010	Mag 2010	Giu 2010	Totale/ media	Apr 2011	Mag 2011	Giu 2011	Totale/ media
m3 soll.	13.007	13.763	14.749	41.519	12.981	14.311	14.315	41.607
kWh tot.	10.174	10.098	11.494	31.766	8.287	9.782	9.509	27.578
kWh/ m3	0,7822	0,7337	0,7793	0,7651	0,6384	0,6835	0,6643	0,6628
% in F1	37%	37%	33%	36%	16%	19%	17%	17%
% in F2	23%	20%	30%	24%	24%	25%	25%	25%
% in F3	41%	43%	37%	40%	59%	57%	59%	58%
Costo €	700,12	692,85	792,74	2.185,71	526,02	627,78	604,99	1.758,79
€/ m3	0,0538	0,0503	0,0537	0,0526	0,0405	0,0439	0,0423	0,0423

Calcolo dell'energy saving annuale

	PRIMA	DOPO		
Potenza installata (kW)	1.247			
mc totali (2011)	11.188.023			
kWh totali	4.867.150	4.234.421		
kWh/mc	0,435	0,378		
% F1	33%	15%		
% F2	33%	25%		
% F3	33%	60%		
Costo energia (€)	338.624	267.618		
Risparmio anuo (kWh)	=	632.730		
Risparmio anuo (€)	=	71.006		


Calcolo del periodo di payback

Costo dell'investimento: 55.000,00 Euro

Risparmio annuo:

71.000,00 Euro

Periodo di payback: ~ 9,3 mesi

Grazie!

Ing. Fabio Fontanot, Acegas APS Ing. Mauro Zoglia, IGP Ing. Marco Viganò, Omron

Bologna, 7 novembre 2013